Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration
نویسندگان
چکیده
The iterative closest point (ICP) algorithm is one of the most popular approaches to shape registration currently in use. At the core of ICP is the computationally-intensive determination of nearest neighbors (NN). As of now there has been no comprehensive analysis of competing search strategies for NN. This paper compares several libraries for nearest-neighbor search (NNS) on both simulated and real data with a focus on shape registration. In addition, we present a novel efficient implementation of NNS via k-d trees as well as a novel algorithm for NNS in octrees.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملA Comparison of 3D Registration Algorithms for Autonomous Underground Mining Vehicles
The ICP algorithm and its derivatives is the de facto standard for registration of 3D range-finder scans today. This paper presents a quantitative comparison between ICP and 3D NDT, a novel approach based on the normal distributions transform. The new method addresses two of the main problems of ICP: the fact that it does not make use of the local surface shape and the computationally demanding...
متن کاملFast Shape-Based Nearest-Neighbor Search for Brain MRIs Using Hierarchical Feature Matching
This paper presents a fast method for quantifying shape differences/similarities between pairs of magnetic resonance (MR) brain images. Most shape comparisons in the literature require some kind of deformable registration or identification of exact correspondences. The proposed approach relies on an optimal matching of a large collection of features, using a very fast, hierarchical method from ...
متن کاملApproximate all nearest neighbor search for high dimensional entropy estimation for image registration
Information theoretic criteria such as mutual information are often used as similarity measures for inter-modality image registration. For better performance, it is useful to consider vector-valued pixel features. However, this leads to the task of estimating entropy in medium to high dimensional spaces, for which standard histogram entropy estimator is not usable. We have therefore previously ...
متن کامل